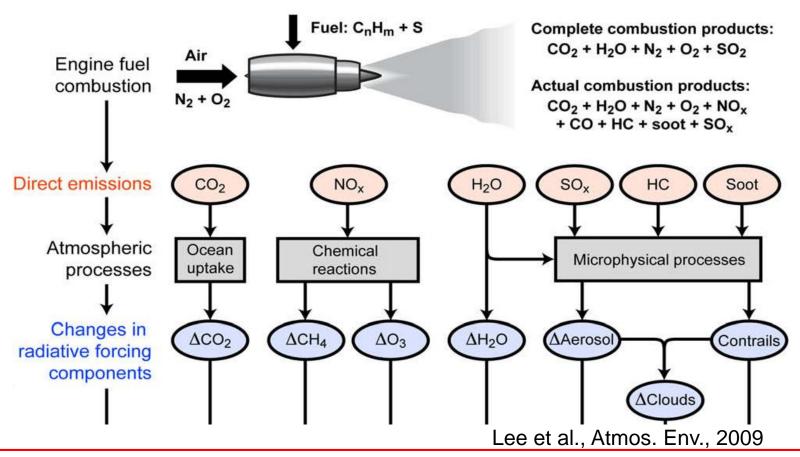

Alternative-Fuel Effects on Contrails & Cruise EmiSSions (ACCESS-2) Flight Experiment

Fundamental Aeronautics Fixed Wing Project

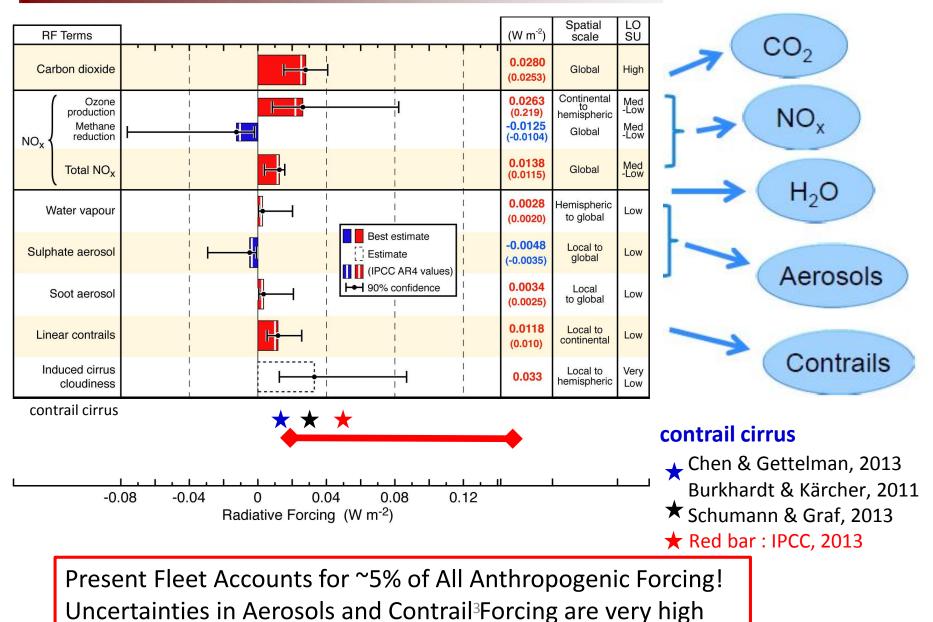
Deutsches Zentrum
für Luft- und Raumfahrt
German Aerospace Center



National Research Council Canada

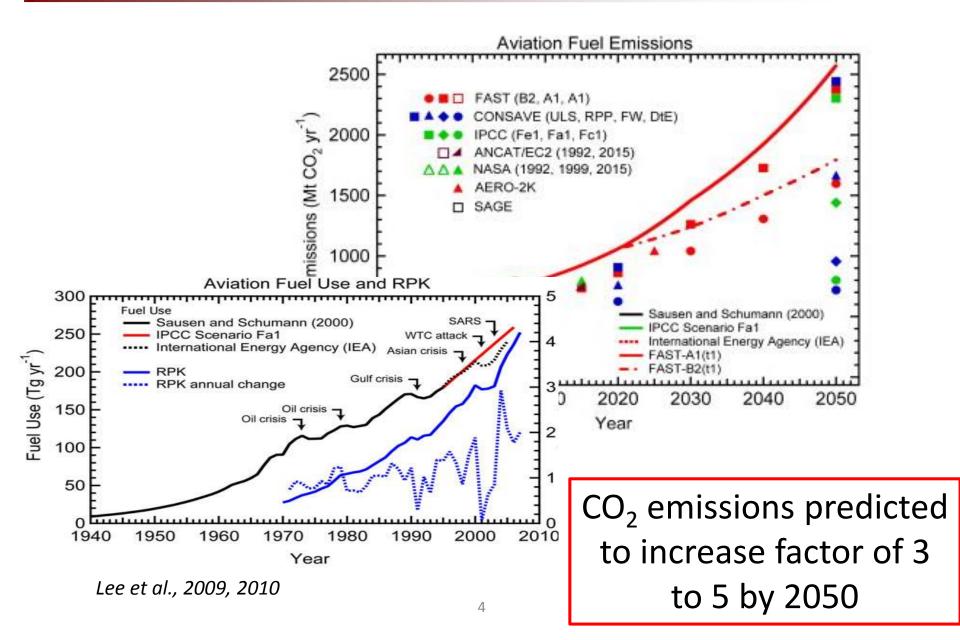
2.4

How Does Aviation Effect the Environment?

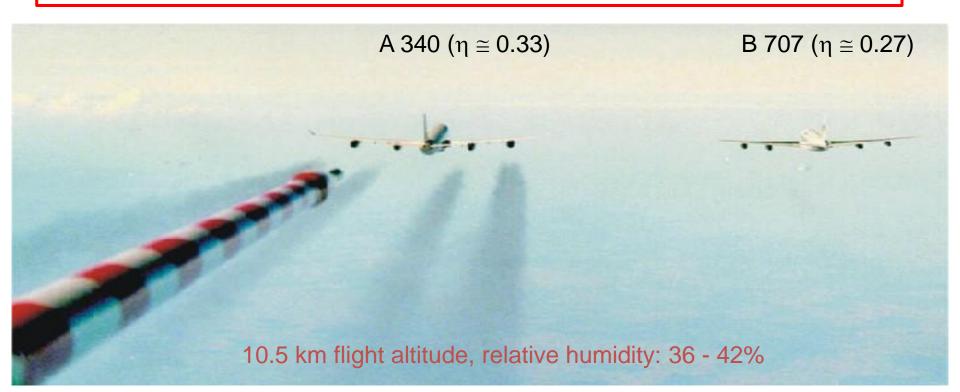


- Aerosol and gas-phase emissions effect air quality near airports
- NOx emissions effect background Ozone concentrations
- Aerosols can influence cloud formation and radiative properties
- Contrails, Black Carbon, and CO₂ can enhance anthropogenic radiative forcing

ICAO considering new regulations to reduce particle emissions


Aviation Radiative Forcing Impacts a Major Concern

Aviation Fuel Usage Growing Rapidly



More Efficient Aircraft Create more Contrails

Newer engines extract more heat to perform work, have cooler exhaust, higher %RH

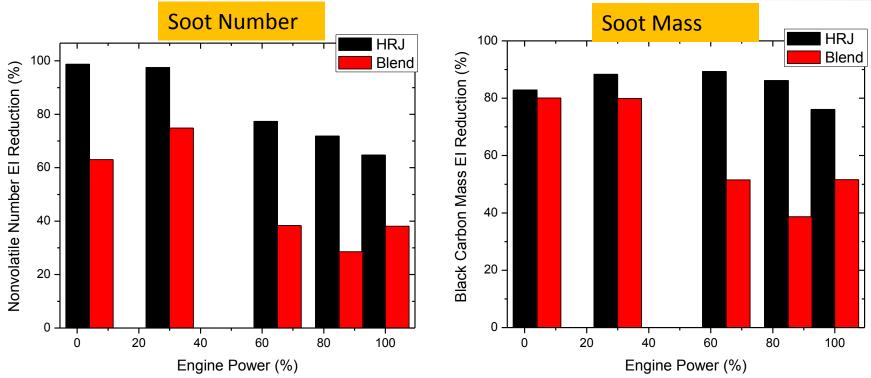
U. Schumann, 2000

Contrail-induced cloudiness may increase on par with or more rapidly than CO₂ emissions

Alternative Fuels Offer Avenues for Mitigating Environmental Impacts of Current Fleet

- Can be made from renewable, sustainable feed-stocks to reduce CO2 emissions
- Contain no aromatics hydrocarbons, thus greatly reduce soot emissions
- Contain no sulfur, greatly reduce volatile aerosol and cloud condensation nuclei emissions
- Lower aerosol and soot emissions predicted to reduce contrail coverage and radiative forcing effects

ACARE Alt Fuel Tragets: 2% in 2020, 25% in 2035, 40% in 2050) United States FAA Goal: 1 Billion gallons of renewable jet fuel by 2018


NASA ARMD Alt Fuel Research

- Laboratory tests to determine alternative fuel combustion and emissions characteristics
 - High-pressure flame-tube experiments on LDI fuel injectors—ongoing
 - High-pressure tests on GE & PW sector rig combustors—2013
- Ground-based engine tests to evaluate alternative fuel effects on emissions under real-world conditions
 - o PW308—March 2008
 - AAFEX-I—January 2009
 - AAFEX-II—March 2011
- Cloud chamber tests to examine PM effects on contrail formation
 - ACCRI/FW Tests—2010 thru 2015
- Airborne experiments to evaluate fuel effects on emissions and contrail formation at cruise
 - o ACCESS-I: Feb-April, 2013
 - ACCESS-II: May, 2014

AAFEX-II Clearly Demonstrated Alt Fuel Benefits

- Ground tests cannot simulate engine operations and ambient conditions at cruise
- Flight tests also required to advance understanding of fuel effects on contrails

ACCESS Objectives

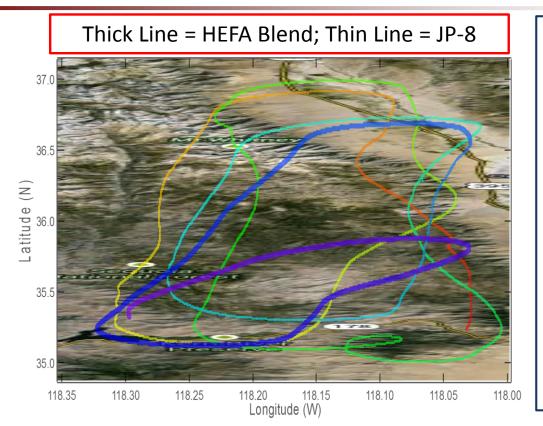
- 1. Examine the effects of Alt fuels on aircraft cruise-altitude gas and particle emission indices
- 2. Characterize the evolution (growth, changes in composition) of exhaust PM how this is impacted by fuel composition
- 3. Investigate the role of soot concentrations/properties and fuel sulfur in regulating contrail formation and the microphysical properties of the ice particles.
- Survey soot and gas-phase emissions in commercial aircraft exhaust plumes in air-traffic corridors to provide context for DC-8 measurements

Source Aircraft: NASA Dryden DC-8

- Uses CFM56-2-C engines; NASA asset, no restrictions on data use or for burning alt fuels
- Ground-based emissions studied in over 75 hours of tests during APEX, AAFEX-I, and AAFEX-II
- In-flight emissions previously characterized during SUCCESS and POLINAT

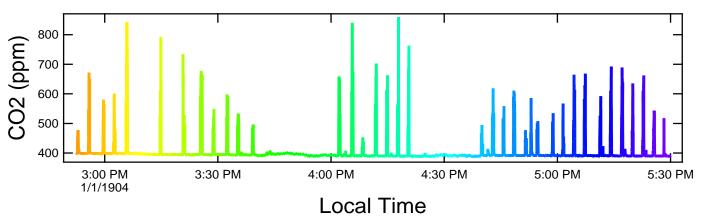
Previous Tests Indicate DC-8 PM Emissions Significantly Reduced by Burning Alt Fuels

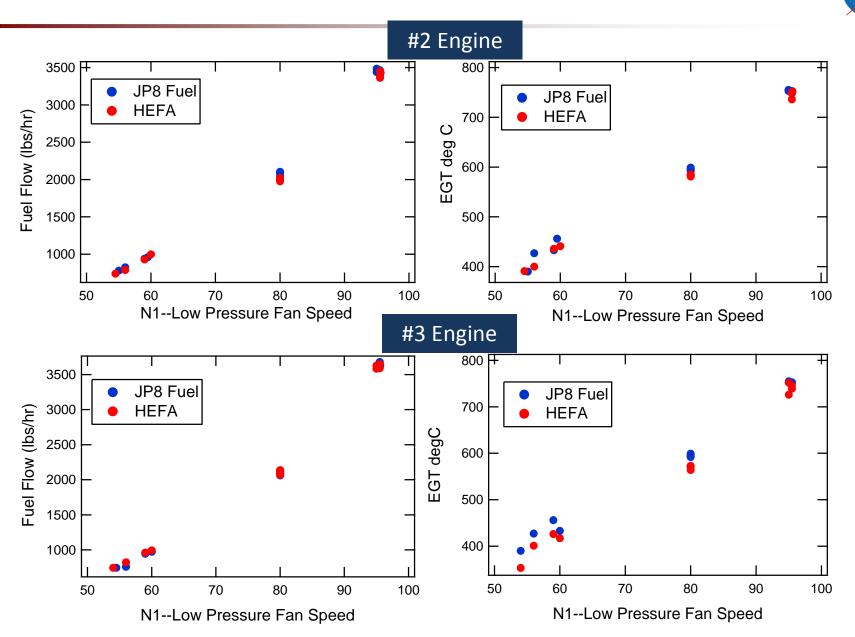
ACCESS-1 Experiment Activities



- Selected and modified chase aircraft (HU-25) with sample inlets and cloud probes
- Mounted extensive instrumentation package in HU-25 cabin
- Established project hazards/mitigations and flight rules
- Procured JP-8 and Camelina-based HEFA fuels
- Deployed aircraft and Mobile Lab to Palmdale 2/19/2013
 - Mixed 50:50 JP-8/HEFA and obtained fuel certification
 - Performed "practice" flight with DC-8 to hone techniques
 - Performed 4 exhaust and contrail sampling missions with DC-8 in 32 kft to 37 kft altitude range
 - Conducted extensive ground sampling of DC-8 exhaust to obtain more detailed emissions data
- Transited Home to Langley 4/14/2013

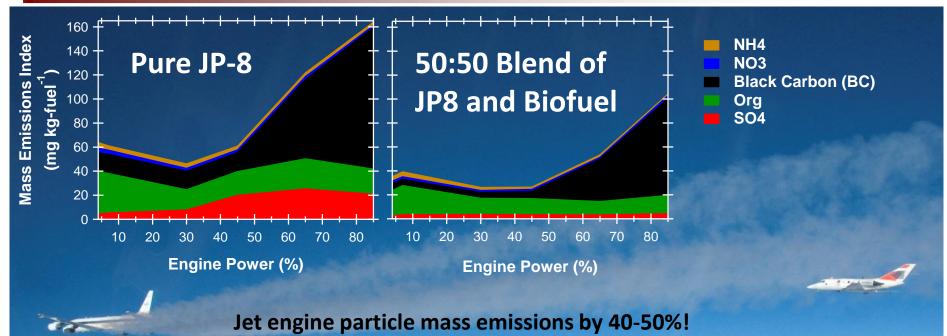
Project went on Hiatus from March 7 to April 2, 2013 for Dryden Safety Stand-Down

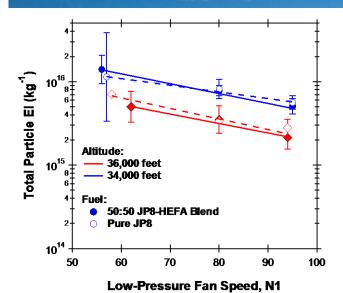

Flights Entailed flying Racetracks over Edwards



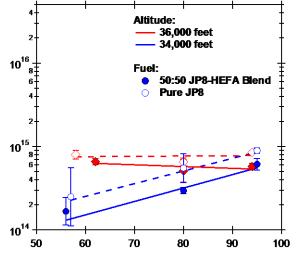
Flight Rules

- Contrails must be visible to outline wingtip vortices
- Falcon to exit plume when wake-vortex roll-up evident
- Far-field measurements restricted to sampling exhaust/ice detraining from top of wake vortices
- Falcon to remain clear of contrail until wake vortices decay
- Must remain < 50 NM from landing strip




Fuels Exhibited Similar Performance at Cruise

Blended Bio-Fuel Clearly Reduced PM Emissions



Soot number density also reduced by half, but total PM number unchanged because of nonlinear dependence on fuel sulfur concentration

Non-Volatile Particie El (kg^{.'})

Low-Pressure Fan Speed, N1

ACCESS-1 was Mostly Successful, But.....

- DC-8 fuel system led to slow contamination of the JP-8
- Did not have persistent contrails, which limited far-field sampling
- Flight rules did not allow entering contrails as long as vortical motion was present, further restricting sampling in aged plumes
- Found that ice particles scavenged aerosols, observations highly variable
- Found that cloud particles were mostly smaller than our instruments could detect
- Instrument suite wasn't adequate to address aerosol composition questions

ACCESS-2 Objectives

- •Establish fuel and thrust effects on emissions at cruise and the relationship between ground and cruise black carbon emission indices
- •Examine the impact of contrail processing on aerosol emission indices
- Investigate the relationship between BC #/size and ice particle characteristics as a function of ambient conditions
- Investigate the role of fuel sulfur in volatile aerosol and contrail formation at cruise
- •Obtain detailed wake turbulence measurements to validate wakevortex model predictions

ACCESS-2 Plan was presented at the International Forum for Aviation Research Meeting in July 2013 international partners were invited to participate—NRC-Canada, DLR-Germany and JAXA-Japan signed on.

Benefits of Collaborations

- •International participants bring a broad range of scientific expertise to ACCESS many have been doing this type of work for 20 years!
- •Conducting work in cooperation reduces duplication of effort, helps build scientific consensus in interpreting observations
- •Resources are limited, fuels and flight hours are expensive-- partnerships help spread the costs
- •Sampling aircraft capabilities limited, multiple platforms with complementary instruments greatly broaden measurements suite
- •Piloting sampling aircraft highly demanding, multiple platforms reduces work load, increases time on station
- •Multiple sampling platforms provide opportunity to simultaneously observe exhaust plume/contrails at different ages

ACCESS-2 Experiment Summary

Sponsor: NASA ARMD Fixed Wing Project

Participants: NASA GRC, LaRC, AFRC, DLR, NRC-Canada

Dates: May 5-30, 2014

Location: Armstrong Flight Facility, Palmdale, CA

Fuels:40,000 gals Low S Jet A6,250 gals HEFA (blended 50:50 w/Jet A)

Source: DC-8 w/CFM56-2C engines

Sampling: NASA HU-25 Falcon

- Aircraft DLR Falcon 20 NRC Canada T-33
- Flights: 28 Hours of DC-8 flight time enough for 7, 4-hour flights

Ground: 4 hrs engine run time

ACCESS-2 Source and Sampling Platforms

Platform Instruments

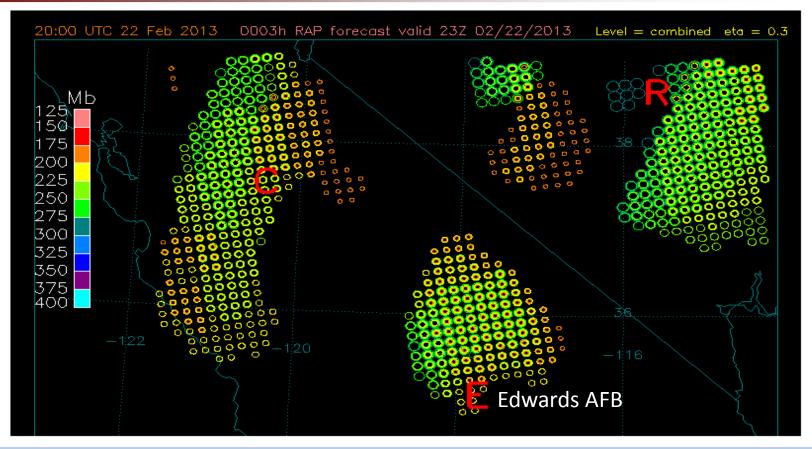
Parameter	NASA HU-25	DLR Falcon 20	NRC CT-133
CO ₂	LGR, Licor 820 (Wing)	Picarro	Licor 840A
СО	LGR		
CH ₄		Picarro	Offline Flask Canisters
H ₂ O	DLH		Licor 840A
Hydrocarbons		Chemical Ionization MS	Offline Flask Canisters
H ₂ SO ₄		Chemical Ionization MS	
NO and NO ₂	LGR Cavity Ringdown	Chemiluminescence	Thermo 42I (Chemlum.)
O ₃	2B Tech	2B Tech	
Ultrafine Aerosol (>3-5 nm)	TSI 3025 CPC	СРС	
Fine Aerosol (>10 nm)	TSI 3010 CPC	2 CPCs (>10nm , >14 nm)	TSI 7610 CPC
Nonvolatile Aerosol >10 nm	TSI 3010 CPC w/ thermal denuder	CPC w/ thermal denuder	
Fine Aerosol Size	TSI SMPS 3776	Multiple CPCs	
Accumulation Mode Aerosol Size	DMT UHSAS	Optical Particle Counter, DMT UHSAS, PCASP	
Soot Mass	PSAP	PSAP, SP2	Artium LII-200 BC
Aerosol Composition	HR-ToF-AMS		
Cloud Particle Size	CDP, FSSP-300	FSSP-100	FSSP-100
Cloud Particle Size/Images	CAPS	CAPS-DPOL	
T, P, Altitude, TAS, IAS, etc.	Air Data / Ballard	Air Data	Air Data
Platform Position, Attitude and Accelerations	Applanix INS/GPS	INS/GPS, Gust Probe	INS/GPS, Gust Probe

Flight Plan for 3 chase planes

- DC-8 and T-33 take off together and T-33 samples in the climb
- After 40-50 minutes, first Falcon takes off and joins the formation at 32-36 kft
- T-33 RTB after 1 hr, leaves Falcon to sample solo for ~40 mins
- Second Falcon takes off 40 minutes after first and joins formation for tag-team sampling
- First Falcon RTB after 3 hrs, leaves second Falcon to sample solo for 40 mins
- Typical flights lasted 4.5 hours

Engine Thrust Varied to Study Power-Dependent Emissions

Inboard Engines Idled Back



Outboard Engines Idled Back

Varied Engine FF from ~1000 to 3000 lbs/hr, balancing Inboard/Outboard thrust to maintain constant 200 knots IAS

Contrails Scarce, Used LaRC and DLR Models to Plan Flights

Langley Contrail Forecast Model (Pat Minnis, PI) http://enso.larc.nasa.gov/sass/contrail_forecast/contrail_prediction.html

Special Thanks to Ulrich Schumann for providing high quality contrail predictions and meteorological products on a daily basis during all of ACCESS-II

ACCESS Also Included Ground Test Measurements

Enabled additional measurements, power settings, and traceability to past results

- Probe stands mounted at 30 m behind both inboard engines
- Falcon instrument payload + the mobile laboratory with additional instruments (shown at right)
- Cycle through fuels, power settings over an approximately 4-hr. experiment

Summary of Field Activities

NASA

- Flight 1: Standard Jet A, 4-aircraft test plan verification, May 7
- Flight 2: Low S Jet A/HEFA Blend, all aircraft, May 8
- Flight 3: Low S Jet A/HEFA Blend, all aircraft, May 9
- Flight 4: Low S Jet A/HEFA Blend, all aircraft, May 10
- Flight 5: DC-8 Fuel System Problem, May 12---Stand-down for 10 days
- Bolden Visit, mini-science team meeting, May 13
- Flight 6: Chase Aircraft sample each other, May 15
- Flight 7: Falcon 20/HU-25 chase each other, May 16
- Falcon 20 and CT-133 depart for home, May 17
- DC-8 Ground Test, May 21
- Flight 9: Med S Jet A/HEFA Blend, DC8+HU-25, May 22
- Flight 10: Med S Jet A/HEFA Blend, DC8+HU-25, May 27
- Flight 11: Med S Jet A/HEFA Blend, DC8+HU-25, May 29
- Flight 12: Med S Jet A/HEFA Blend, DC8+HU-25, May 30
- HU-25 Transit home, May 31

Accomplishments

- Developed/applied successful multiplatform sampling techniques
- Acquired detailed cruise emissions data at 3 power settings and 5 altitudes for 3 fuels
- Obtained comprehensive wake vortex observations for model development and validation
- First observations of aerosol composition in aircraft exhaust plume
- First direct measurements of contrail EI_ice with corresponding EI_soot data

Significant Results

- > No difference in DC-8 performance or fuel system operations between fuels
- ➢ No difference in NOx, CO, and HC emissions between fuels
- > Blend reduced soot particle number and mass emissions by 50% on ground and at cruise
- Sulfate aerosol number and mass depends fuel sulfur—no difference between Blend and low-S JetA
- Volatile aerosol showed strong engine oil signature at altitude
- EI_ice increases with EI_soot
- Ice particle sizes decrease with increasing soot emissions
- Between 10 and 100% of soot particles activated to form ice

ACCESS was a good start, but....

- Only a single fuel examined, need emissions data for fuels with different hydrocarbon compositions
- Detailed data only available for 30-year-old technology (DC-8), need to observe other platforms
- > Fuel sulfur story far from complete, need data for broad range of Sulfur concentrations
- Contrail statistics poor, need observations across a broad range of conditions, fuel and contrail ages

There were no observations within Persistent Contrails in ACCESS

Upcoming Opportunities

NASA APU fuel characterization at GRC—Feb, 2015

- Will measure gas and aerosol emissions for 5 different alt fuels
- Will include fuel sulfur and aromatic content experiments

DLR ECLIF—2014 thru 2018

- Includes laboratory, ground and airborne studies of multiple fuels
- Airborne component will use A320 and sampling aircraft to study fuel effects on emissions and contrails, similar to ACCESS-2

QUESTIONS?

N525N4

1

ARAL