

Paul A. Bernhardt Plasma Physics Division Washington, DC 20375 Phone: 202-767-0196 E-Mail: bern@ppd.nrl.navy.mil

12th Workshop on the Physics of Dusty Plasma 19 May 2009

Charged Aerosol Release Experiment Modified/Enhanced CARE Concept

CARE

Radar and In Situ Diagnostics of Artificial Dusty Plasma Cloud

Objectives: Examine the effect of artificially-created, charged-particulate layers on the penetration of UHF, L-Band and S-Band radars.

Design and build a rocket payload with a chemical release and instruments to solve the mystery of radar echoes from dusty plasmas

Description: A series of rocket experiments will be conducted to test the theories for radar scatter from charged dust.

- Rocket Experiment
 - Chemical Release (280 km Altitude, 111 kg)
 - Instrumented Payload
 - Radio Beacon (CARE I)
 - Ground Radars for Backscatter Observations
 - Launch Sites
 - Wallops Island, Virginia (CARE I 2009)
 - Andoya, Norway or Poker Flat, Alaska (CARE II)
 - Kwajalein, Marshall Islands (CARE II Alternate)
- Supporting Theory
 - Chemical Release: Plume Model
 - Particle Dispersal: Monte Carlo Simulations
 - Plasma Turbulence: Electrostatic PIC Code
 - Radar Scatter: Electromagnetic Theory

CARE Personnel

<u>Name</u>
Dr. Paul Bernhardt
Dr. Carl Siefring
Matt Wilkens
Prof. Iain Boyd
Dr. Jonathan Burt
Prof. Wayne Scales
Prof. Marlene Rosenberg
Dr. John Ballenthin
Dr. Miguel Larson
Dr. Erhan Kudeki
Dr. Julio Urbina
Dr. Phil Erickson
Dr. George Jumper

Affiliation NRL/PI NRL/Project Scientist NRL Eng. Support University of Michigan University of Michigan Virginia Tech UC San Diego AFRL/RVBXT Clemson Illinois/Urbana PSU Millstone Hill AFRL/RVBYA

Name Ted Gass **Brent Edwards Christine Power** Tom Widmyer Charles Lankford Eric Johnson Valerie Gsell Cathy Hesh Adam Sturgis Greg Ellis **Roland Wescott** Ron Walsh Libby West

Affiliation NSROC/MM NSROC/FP NSROC/FP NSROC/ME NSROC/EE-TM NSROC/EE-Power NSROC/GNC NSROC/VSE NSROC/SQA NASA/Ground Safety NASA/Flight Safety NASA/PM NASA/SRPO

CALE ACTICULATE Release Observations During the SCIFER Mission on 25 January 1995

- 25 January 1995 Four Stage Black Brandt XII Launch from Andoya Norway
- Nihka Motor Fired from 98.7 to 156.3 km Altitude
- Dust Cloud Observed for 66 Minutes
- 5.6 GHz Radar Echoes Attenuated by 7 dB •

- Artificial Noctilucent Cloud Formation
 - Physics of Enhanced Radar Scatter
 - Radar, Lidar and Optical Diagnostics
 - Satellite Measurements (AIM)

- Release from Nihka Solid Rocket Motor
 - Large Concentration of Dust
 - Supersonic Injection Velocity
- Experiment Enhancements
 - Ground and Ship Ionosonde Diagnostics
 - Direct Injection by Chemical Release Module

CARE

Nihka Motor Dust Generator for CARE $(111 \text{ kg Al}_2\text{O}_3 \text{ in } 17 \text{ Seconds})$

Constituent	Mole Fraction	Total Mass
Carbon Monoxide	0.2039	69.1 kg
Carbon Dioxide	0.0186	9.9 kg
Monatomic Chlorine	0.0124	5.3 kg
Hydrogen Chloride	0.1478	65.2 kg
Hydrogen	0.2712	6.6 kg
Monatomic Hydrogen	0.0317	0.4 kg
Water	0.1393	30.4 kg
Nitrogen	0.0817	27.7 kg
Aluminum Oxide	0.0897	110.6 kg

DSMC Computations of Nozzle Effect on Plume Properties for Nihka Motor

Jonathan Burt and Iain Boyd May 2009

• Computational mesh

With Nozzle

• Streamlines, contours of bulk gas velocity (m/s)

Nozzle Removed

E 0.3

Computational mesh

• Nozzle is truncated 1.3 cm downstream of the throat

Michigan Engineering

Distributions of Solid Rocket Particulates

(1) Mueller, A. C. and D. J. Kessler, The Effects of Particulates from Solid Rocket Motors Fired in Space, Adv. in Space Res., 5, 77-86, 1985.

(2) Jackman, CH, DB Considine, and EL Fleming, A Global Modeling Study of Solid Rocket Aluminum Oxide Emission Effects on Stratospheric Ozone, Geophys. Res. Lett., 25, 907-910, 1998.

(3) S Gossé, L Hespel, P Gosart and A Delfour, Morphological Characterization and Particle Sizing of Alumina Particles in a Solid Rocket Motor, J. Prop. Pwr., 22, 127-135, 2006.

Solid Rocket Particles

THEUNIT

Farfield Comparison

 Comparison between nozzle (multicolored lines) and without nozzle (black lines) cases for axial and radial velocity along outflow boundary

Farfield Comparison

 Comparison between nozzle (multicolored lines) and without nozzle (black lines) cases for density and temperature along outflow boundary

Thrust Calculation

• Thrust is evaluated by integrating contributions due to pressure and axial momentum flux from the gas and from each particle size over the farfield outflow boundary.

Case:	Nozzle	Without nozzle
Gas contribution (kN)	22.58	13.76
Particle contribution (kN)	11.75	7.40
Total (kN)	34.33	21.17

Nozzle Nihka Motor Chemical Payload Trajectory and Radio Propagation Experiment for CARE

Dust Charging (Charge Impact, Photo-Detachment)

CARE

$$Q_{d} = 4\pi\varepsilon_{0}r_{d}\phi_{d}, \ \frac{dQ_{d}}{dt} = I_{e} + I_{i} + I_{p}, \ I_{e} = \sqrt{8\pi}r_{d}^{2}q_{e}n_{e}v_{Te}\exp[-\frac{q_{e}\phi_{d}}{KT_{e}}]$$

$$I_{i} = \sqrt{8\pi} r_{d}^{2} q_{i} n_{i} \sqrt{v_{Ti}^{2} + v_{T}^{2} + v_{r}^{2}} [1 - \frac{q_{i} \phi_{d}}{KT_{i}}], \quad I_{p} = -\pi r_{d}^{2} q_{e} J_{p} Q_{ab} Y_{p} \exp[\frac{q_{e} \phi_{d}}{KT_{p}}]$$

• Dust Particle Equation of Motion (Drag, Lorentz Force, Electric Fields, Gravity, Mean-Free-Path)

$$\frac{d^{2}\mathbf{r}(t)}{dt^{2}} = -v_{a}(\mathbf{r}, \mathbf{u}) \frac{d\mathbf{r}(t)}{dt} + \frac{Q_{d}(t)}{m_{d}}(\mathbf{E} + \frac{d\mathbf{r}}{dt} \times \mathbf{B}) + \mathbf{g}$$
$$v_{a}(r, u) = \frac{\sqrt{V_{r}^{2} + V_{T}^{2}}}{L_{p}(r)}, \ L_{p}(r) = \frac{2 m_{p}}{C_{D} \rho_{n}(r) A_{p}} = \frac{8\rho_{p}}{3\rho_{n}}r_{d}$$

with
$$A_p = \pi r_p^2$$
, $m_p = \rho_P \frac{4}{3} \pi r_p^3$, $C_D = 2$ for $r_d \square L_p$

Dust Electric Fields

 $| \mathbf{O} \rangle$

Quasi-Neutrality

$$q_i n_i + q_e n_e + n_d \left\langle Q_d \right\rangle = 0; n_e = n_i - n_d \frac{\langle Q_d \rangle}{q_e}$$

Ambipolar Electric Field

$$\mathbf{E}_{\parallel} = \frac{kT_{e}\nabla_{\parallel}\partial\mathbf{n}_{e}(\mathbf{z}, \mathbf{t})}{\mathbf{q}_{e} \mathbf{n}_{e}(\mathbf{z}, \mathbf{t})} = \frac{kT_{e}\nabla_{\parallel}\left(\mathbf{q}_{e}\mathbf{n}_{i} - \mathbf{n}_{d}\left\langle\mathbf{Q}_{d}\right\rangle\right)}{\mathbf{q}_{e}\left(\mathbf{q}_{e}\mathbf{n}_{i} - \mathbf{n}_{d}\left\langle\mathbf{Q}_{d}\right\rangle\right)} \cong -\frac{kT_{e}\nabla_{\parallel}\left(\mathbf{n}_{d}\left\langle\mathbf{Q}_{d}\right\rangle\right)}{\mathbf{q}_{e}\left(\mathbf{q}_{e}\mathbf{n}_{i} - \mathbf{n}_{d}\left\langle\mathbf{Q}_{d}\right\rangle\right)}$$

- Transient Parallel Electric Fields
- Electron Acceleration?
- Effect on Ions?

CARE

Radar Observation Geometry of Rocket Launches from Wallops Island by the Millstone Hill Radar

Millstone Hill Incoherent Scatter Radar at MIT Haystack, MA

- 440 MHz UHF Radar
- Fully Steerable 150 foot Dish
- Line of Sight Densities, Drifts, and Temperatures

CARE Ground Radars and Lidars

HF Radar

CARE

- Wallops Ionosonde (Digisonde and Dynasonde)
- SuperDARN (Virginia Tech)
 - Dr. Raymond A. Greenwald, Ruohoniemi Mike,
 - Joseph Baker
- Data Products
 - HF Backscatter
 - Background lonosphere
- VHF Radar
 - 50 MHz Penn State/U. Illinois
 - Professor Julio Urbina
 - Data Product
 - Background Irregularities
 - VHF Backscatter
- UHF Radar
 - 440 MHz Millstone Hill Radar, Haystack, MA
 - Phil Erickson, Frank Lind, John Foster
 - Data Products
 - UHF Backscatter
 - Background lonosphere
- LIDAR (Laser and Telescope)
 - NRL Optical Test Facility, MRC, VA
 - 0.5, 1.0, 1.5 micron Lasers with 5 ps Pulse
 - Linda Thomas and Ray Burris
 - Data Products
 - Particle Size Distribution
 - Transport of Dust

NASA Wallops Dynasonde Antenna

MIT Millstone Hill Radar

Ground Diagnostic Sites for CARE

CARE Rocket Trajectory

CARE Chemical Release Position Relative to the Millstone Hill UHF Radar for Nihka with Nozzle

Single Nihka Motor Payload

Nihka

- Gross Mass: 399 kg (879 lb), Empty Mass: 70 kg (154 lb).
- Propellants: Solid.
- Thrust (vac): 50.500 kN (11,353 lbf).
- Isp: 285 sec., Burn time: 17 sec.
- Total Chemical Payload Mass
 - Gross Nihka Mass 400 kg
 - Supporting Hardware 190 kg
 - Total Mass 590 kg
- Payload Apogee 350 km
- CARE Release Point ~280 km on Downleg
 - Chemical Payload Descending at 1 km/s
 - Exhaust Injection at 2 km/s Downward
 - Full Dust Cloud Released in 17 Seconds

Payload Components

NRL CERTO Rocket Beacon Paul Bernhardt, Matt Wilkens

- Plasma Measurements
 - Radio Beacon (Bernhardt)
 - Radio Scintillations at VHF and UHF
 - Background Electron Density
 - Electron Removal by Chemical Release

AFRL Planar Langmuir Probe John Balenthin, Pl

- Ion Density at Nihka Motor Section
- Backplate
 - 1/2", 5"x5" Square Aluminum
 - 4"x4" Raised Portion Flush to Skin.
- Behind Probe
 - 1/8" thick aluminum
 - Teflon (1/8" flat plate) for High Temperature
 - G10 epoxy board for Low Temperature
- Gold Conductor
 - Square 2.3" x 2.3"
 - Circle 1.5" Diameter
 - 1/4" thick
- Gold Plated Stainless Steel
 - 304 grade
 - Attached by Screws Through Back Panel
- Connector Pins
 - Pin 1: Ch1+ 6000s/s A/D channel
 - Pin 9: Twisted pair or shield ground for Pin1
 - Pin 2: Ch1- 1000s/s A/D channel
 - Pin 10: Twisted pair or shield ground for Pin2
 - Pin 7: +28VDC
 - Pin 14: 28V Return
 - Pin 8: +28VDC
 - Pin 15: 28V Return

Instrumented Boat Station

Satellite Sensor for CARE

- Diagnostics of CARE Artificial Dust Cloud
 - AIM Panoramic UV Nadir Imaging System
- Global Transport of Dust Layer

CARE Launch Window

- Requirements
 - Clear Skies at 3 Observation Sites
 - Moon Below Horizon
 - Evening Sun at 12 to 18 Degrees Depression Angle
 - No Sporadic-E One Hour Before Launch
 - Sporadic-E Will Interfere with Dust Radar Scatter Observations
- Launch Window
 - Release Time
 - Date 8-19 September 2009
 - Release Time 19:18 to 19:00 EST (Date Dependent)
 - Optical Observation Period
 - Date 8-19 September 2009
 - Viewing Until 19:50 to 19:31 EST (Date Dependent)
 - Viewing Time ~ 30 Minutes
 - Sporadic-E is Bad in August so September Chosen