The Arctic Methane Emergency Group (AMEG) sent a letter to world leaders [1] demanding immediate geoengineering to prevent runaway global warming due to melting and venting frozen methane hydrates, based on a theory called the "clathrate gun hypothesis." [2] The UK government response [3] to AMEG's geoengineering call was met with an angered response by AMEG [4] claiming that the UK's judgement was based on non-existent observations.
AMEG members Malcolm P.R. Light and Sam Carana proposed additional steps to prevent runaway global warming from arctic methane eruption:
- Project LUCY: high power radio frequency transmitters to detect and (using three transmitters like the High Frequency Active Auroral Research Program, HAARP) compress atmospheric methane into diamond dust to create artificial noctilucent clouds, to reflect sunlight back into space, and cool the arctic. [5] [6]
- Arctic Natural Gas Extraction Liquefaction & Sales (ANGELS Proposal): arctic drilling and hydraulic fracturing (fracking) to remove methane before it could vent into the atmosphere. [7] [8]
AMEG Strategic Plan: (GEOENGINEERING) Action Plan
“Up to 50 Gigatons of methane could be rapidly released from under arctic ice” - Arctic Methane Emergency Group (AMEG).
As for appropriate interventions, there are a number of things to do immediately in parallel:
- Consider practices and regulations that are having, or risk having, a heating effect on the Arctic. A postponement of drilling in the Arctic would be sensible, because of inevitable escape of methane but also because of the risk of blowout with or without oil spill.
- Try to maintain or even enhance the current cooling effect from currently emitted sulphate aerosols in the troposphere at mid to high northern latitudes. For example the regulation to ban bunker fuel for ships should be relaxed while encouraging continued use of bunker fuel where the resulting aerosol emissions might be beneficial. Reduction of sulphate aerosol ‘pollution’ will be unpopular with many environment groups, but the priority to cool the Arctic has to be established.
- Establish the positive and negative net forcing from contrails, and encourage flight paths of commercial airplanes to reduce positive or increase negative net forcing. The ban on polar flights, lifted recently, should be reintroduced.
- Reduce black carbon into Arctic. Make for preparedness to fight tundra fires in Arctic and sub-Arctic.
- Find ways to remove black carbon from coal fired power stations, while allowing or compensating for the cooling effect that their aerosol emissions would be producing without the scrubbing out of sulphur compounds.
Geoengineering actions for enhancing the reflection of sunlight back into space and for increasing the thermal energy emitted into space.
- Prepare the supply and logistics for spraying aerosol precursor in large quantities, preferably into the lower stratosphere, for deployment by next March or April (not sooner because the risk of ozone depletion). Of course, possible negative impacts have to be considered before large scale deployment, but it is worth being fully prepared for such deployment on the assumption that this technique can be made to work effectively.
- Develop and test the deployment of suitably reflective particles, of such materials as TiO2, as alternative or supplement to sulphate aerosol. Prepare for large scale deployment.
- Finance the development of, and deployment capability for, marine cloud brightening, with a view to deployment on a large scale in spring 2013 – assuming that is the earliest conceivable time. The main technical problem seems to be with the jets, so experts from major companies in the ink-jet technology field need to be brought in. Boats and land installations need to be kitted out.
- Finance the development and deployment capability for cirrus cloud removal, since this is a promising technique. Suitable chemicals need to be identified/confirmed, with stock-piling of these cloud seeding chemicals. Aircraft need to be kitted out to spray these chemicals.
- Finance brainstorming sessions for geoengineering, with top scientists and engineers, such as to suggest further measures, improvements to above techniques and the development of other intervention ideas.
- Finance the research and trials of all promising techniques for helping to cool the Arctic, including the three geoengineering techniques above. Update Earth System models to deal with the actualities of sea ice retreat, such that the effects of different techniques can be modelled and optimum joint deployment strategies established. [9]
Gas Hydrate Breakdown Unlikely to Cause Massive Greenhouse Gas Release
The breakdown of methane hydrates due to warming climate is unlikely to lead to massive amounts of methane being released to the atmosphere, according to a recent interpretive review of scientific literature performed by the U.S. Geological Survey and the University of Rochester.
The new review concludes that current warming of ocean waters is likely causing gas hydrate deposits to break down at some locations. However, not only are the annual emissions of methane to the ocean from degrading gas hydrates far smaller than greenhouse gas emissions to the atmosphere from human activities, but most of the methane released by gas hydrates never reaches the atmosphere. Instead, the methane often remains in the undersea sediments, dissolves in the ocean, or is converted to carbon dioxide by microbes in the sediments or water column.
The review pays particular attention to gas hydrates beneath the Arctic Ocean, where some studies have observed elevated rates of methane transfer between the ocean and the atmosphere. As noted by the authors, the methane being emitted to the atmosphere in the Arctic Ocean has not been directly traced to the breakdown of gas hydrate in response to recent climate change, nor as a consequence of longer-term warming since the end of the last Ice Age.
“Our review is the culmination of nearly a decade of original research by the USGS, my coauthor Professor John Kessler at the University of Rochester, and many other groups in the community,” said USGS geophysicist Carolyn Ruppel, who is the paper’s lead author and oversees the USGS Gas Hydrates Project. “After so many years spent determining where gas hydrates are breaking down and measuring methane flux at the sea-air interface, we suggest that conclusive evidence for release of hydrate-related methane to the atmosphere is lacking.” [10]