Weather Modification History banner

Sounding Rockets Explosive Shells Pound Ionosphere

December 1, 1970 to April 28, 1972 - ARPA Project SECEDE

Contractor: University of Alaska, Geophysical Institute.
Amount of Contract: $283,849.00

Striations develop within large (12-352 kg releases) barium ion clouds in a two-stage process. First the clouds split into sheets commencing at the trailing edge of the cloud. Then distortions or pinching effects within the individual sheets cause the formation of field-aligned raylike structures. In the clouds observed, the individual sheets were 200 m to 1000 m in thickness and were spaced 700 m to 2000 m apart. Quasi-sinusoidal waviness or spatially periodic thickenings exhibited a wavelength typically 700 m to 1000 m.When rod-like structures appeared, these were typically-200 im to 400 m. in diameter and were spaced along the pre-existing sheet at 700 m to 1000 m on centers. [1]

October 15, 1972 - Rocket energy beams create artificial aurora

An accelerator intended to send electron beams upward along an L=1.24 magnetic field line was flown from a rocket launched from Kauai, Hawaii, on October 15, 1972. Though the intent was to produce several hundred observable auroral streaks in the southern hemisphere, imaging instruments operated there aboard jet aircraft detected only a single aurora. [2]

November 1972 - ARPA Project SECEDE II barium cloud releases

The general goals of the Secede barium release program have been geared to the development of a practical technique by which plasma interaction with the ionosphere could be experimentally studied and suitable theories of such interactions developed therefrom. The Secede experimental program has, for the most part, consisted of two coordinated aspects, that of radio frequency radar measurements and that of optical measurements. In studying barium cloud phenomenology and morphological development, optics has provided the key means of observing and recording the physical history of the release. In addition to providing photographic, radiometric, and spectrographic records after the fact, optical coverage can be displayed in real time for purposes of tracking the cloud(s) as well as for identifying morphological changes. [3]

May 14, 1973 - NASA Skylab launch knocks out radio communication over Atlantic Ocean

Routine Faraday rotation observations of the VHF signal from the geostationary satellite ATS 3 made at Sagamore Hill (Massachusetts) revealed that an unusually large and rapid decay in the ionospheric total electron content (TEC) occurred near 1240 EST on May 14, 1973. The disturbance appeared as a dramatic ‘bite‐out’ of substantial magnitude (≥50%) and duration (of the order of hours) in the expected diurnal TEC curve for that day. Observations from other sites revealed that a ‘hole’ in the ionospheric F region was created over a region approximately 1000 km in radius. The onset of the TEC disturbance occurred within 10 min of the launch of NASA's Skylab workshop by a Saturn 5 rocket. As the rocket moved at F region heights, the burning second‐stage engines passed within 150 km of the Sagamore Hill ray path to ATS 3. A detailed analysis of the aeronomic reactions initiated by the constituents of the exhaust field revealed that the F2 region plasma experienced a devastating loss process as the plume expanded. The specific mechanism involved was the rapid ion‐atom interchange reactions between the ionospheric O+ and the hydrogen and water vapor molecules in the plume, followed by dissociative recombination of the molecular ions. Model calculations of the diffusion of the plume in the ionosphere and its effect upon continuity equation calculations for TEC showed an excellent agreement with the observed onset and magnitude of the effect. The phenomenon has interesting astrophysical and geophysical implications. [4]

November 4, 1974 - High-explosive shaped Barium charges pound ionosphere

Barium ions are well suited for tracing out magnetic field lines, because they resonantly scatter sunlight in several visible wavelengths and because ions are constrained to spiral about magnetic field lines while traveling freely parallel to the field. By use of high explosive shaped charges with hollow conical liners of barium metal, detonated above 500‐km altitude, jets of barium plasma with a range of initial velocity of 8 to 20 km/sec have been created. [5]

Media Gallery

References

1.1.
Davis, T. N., et al. "Observations of the development of striations in large barium ion clouds." Planetary and Space Science 22.1 (1974): 67-78.
https://apps.dtic.mil/dtic/tr/fulltext/u2/757916.pdf
2.2.
Davis, T. N., et al. "Artificial aurora conjugate to a rocket‐borne electron accelerator." Journal of Geophysical Research: Space Physics 85.A4 (1980): 1722-1728.
https://doi.org/10.1029/JA085iA04p01722
3.3.
Boquist, Wallace P., et al. "High Resolution Optical Measurements of ARPA Project Secede 2." TECHNOLOGY INTERNATIONAL CORP BEDFORD MA, 1972.
https://apps.dtic.mil/dtic/tr/fulltext/u2/756938.pdf
4.4.
Mendillo, Michael, Gerald S. Hawkins, and John A. Klobuchar. "A sudden vanishing of the ionospheric F region due to the launch of Skylab." Journal of Geophysical Research 80.16 (1975): 2217-2228.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.638.5684&rep=rep1&type=pdf • https://doi.org/10.1029/JA080i016p02217
5.5.
Wescott, E. M., et al. "L= 1.24 conjugate magnetic field line tracing experiments with barium shaped charges." Journal of Geophysical Research 79.1 (1974): 159-168.
https://doi.org/10.1029/JA079i001p00159
6.6.
Mendillo, Michael, and Jeffrey M. Forbes. "Artificially created holes in the ionosphere." Journal of Geophysical Research: Space Physics 83.A1 (1978): 151-163.
https://doi.org/10.1029/JA083iA01p00151

Broken Links

If any of the links above do not work, copy the URL and paste it into the form below to check the Wayback Machine for an archived version of that webpage.

Jim Lee, ClimateViewer News
Jim Lee
Creator of ClimateViewer News
Follow

“I am forever a Boy Scout, lifetime artist, nocturnal programmer, music is my life, love is my religion, and I am the luckiest husband and father on Earth. I speak for the trees. I have a passion for mapping, magnets, and mysteries.”

About Jim Lee

CLIMATEVIEWER 3D

See pollution, privacy concerns, weather modification & geoengineering experiments, and more. Monitor your world and view satellite imagery in real-time!

View
Map
on
ClimateViewer
3D
's
Globe

We use cookies from third party services (YouTube and Disqus Comments). Read their privacy policies and how you can disable these services by clicking "Privacy Preferences".


Privacy Preferences